If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+49x-100=0
a = -4.9; b = 49; c = -100;
Δ = b2-4ac
Δ = 492-4·(-4.9)·(-100)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-\sqrt{441}}{2*-4.9}=\frac{-49-\sqrt{441}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+\sqrt{441}}{2*-4.9}=\frac{-49+\sqrt{441}}{-9.8} $
| 9n^2-18n-96=3 | | 5x-2.6=1/2(4x+3.2) | | 54=4+1.50c | | -8v+4(v+8)=8 | | 14-x+(-5)=3x+9-10 | | 2.9+10m=8.61 | | 54=4c+1.50 | | 7-3(d-3)=23 | | 3(b-4)=b-2 | | -3(5s-3)-9=-2(9s+9)-2 | | -84=6(-6-m) | | F(x)=5x2 | | 2-2s=3/4s+15 | | Q=−20+2p | | 1/(x^2+4x+4)=4 | | 10=1+5k-6 | | -5(b+9)=25 | | 205=7(-6-6n)-5 | | 2x+5-6x=3x-2 | | -2+3=14a-1 | | 9(m+-2)=m+40 | | 2(3x-5)=4(x-6) | | -37=-2+5w | | 3(2+x)=x-10 | | 14=-3-3x+5 | | -3(7x+5)=-21x-15 | | 144x^2-48x+4=0 | | 3800/xX100=150 | | 7^x+49*7^-x=50 | | (x)=-2 | | -7b-12=-5b+16 | | 3800/x=150 |